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Abstract-The flow dynamics and heat transfer characteristics of the condensate film on a vertical wall is 
analysed by solving the time-dependent Navier-Stokes and the energy equation as well as the Poisson 
equation for the pressure with finite difference schemes and non-periodic boundary conditions. The 
simulation shows the evolution of the condensate film from the leading edge until 0.6 m by the low 
frequency surface fluctuation upstream of the line of wave-inception. Downwards. the time-averaged film 
thickness is decreasing with the flowing of big short waves. which are merging afterwards into individual 

long waves. The strong influence of the wave on the flow is shown by the pressure and vorticity field. 

1. INTRODUCTION 

THIN FILM condensation heat transfer is widely used 
in power plant systems, refrigeration equipment and 
many other industrial process equipment. The con- 
densate film flow is divided into three regions such as 
laminar, wavy and turbulent regions. The heat trans- 
fer coefficient in the wavy and turbulent regions is 
much higher than in the laminar region, forcing the 
falling film as early as possible into the state of big 
roll wave lumps gliding on a thin substrate layer. This 
is one of the most efficient means of increasing the 
heat flux. Contrary to existing opinion that there exists 
a waveless region immediately after the initiation of 
the condensate film, Marschall and Lee [I] showed by 
the stability analysis that the distance from the leading 
edge of the condensation film until the location where 
the film is unstable is negligibly small for practical 
situations. The understanding of the development of 
the condensate flow from the leading edge, the very 
beginning of the falling film, down to the wavy state 
is therefore, important and since it has not been 
covered by publications until now, lead to the inves- 
tigations presented herewith. 

Flow visualization studies of Dukler and Bergelin 
[2] reveal a thin laminar condensate film growing from 
the top of the plate. By flowing downward, small 
ripple waves can be seen on the instable surface at 
Reynolds numbers Re > 20, which are growing to 
distorted sinusoidal waves. The straight crests gradu- 
ally bend and get higher to form intermediate waves 

at Re > 100. These waves steepen on their front at 
Re > 1500 and merge into lumps of roll waves, gliding 
on the thin film substrate, which may also be turbulent 
131. 

The heat flux through the film at constant wall and 
vapor temperature is on the one hand determined by 
the film thickness of the substrate, and on the other 
hand by the flow state. either laminar, wavy or tur- 

bulent with roll waves. The theoretical calculations of 
the laminar flow part at the beginning of the gravity 
driven condensate film [4] and the calculations includ- 
ing the effects of subcooling and the variation of the 
physical properties with temperature [5] have also 
been confirmed by the experiments of Grigull [6]. 
As for the wavy and turbulent falling film without 
condensation, not only the time averaged film thick- 
ness and Reynolds number but also the statistics of 
the wave frequencies as well as wave amplitudes, 
length and celerity were determined in comprehensive 
experimental studies [7-131, covering the range up to 
Re = 13000. 

In order to calculate the How and heat Hux of the 
falling film in the wavy state, many different theories 
have been established. The results fit the experimental 
data to a certain extent, since the calculation schemes 
are restricted by periodicity, space and time averaging 
and linearization. Penev et al. [I41 used an integral 
method to solve the Navier-Stokes equation and lin- 
earized it for the approximation of small wave ampli- 
tudes. The wave numbers, wavelengths and phase- 
velocity can be predicted for small Weber numbers. 
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NOMENCLATURE 

A variable. stands for 11, L’ or p [-] I’ velocity perpendicular to the condensation 
B variable. stands for U, 1: or p [-] plate [-] 
c celerily. c*/u” [-] We Weber number, p”u$,,/a [--] 
c 
’ 

specific heat of liquid at constant pressure s coordinate parallel to the condensation 
[Jkg~ ‘K-‘1 plate [-] 

,/‘+ distortion factor ?’ coordinate perpendicular to the 

.I’ frequency [Hz] condensation plate [-1. 
Fr Froude number, rr&6,) [-] 
G mass flow rate of film per unit film width. Greek symbols 

[kgm-’ ss’] l- dimensionless surface tension, 
11 heat transfer coefficient [W m ‘K ‘1 cr(\hJ) “‘/P [-] 
H dimensionless parameter. c,,( 7, - T,,)/L s film thickness [-] 

1-l i relaxation factor in SOR-method 
i mesh point index number in r-direction 1-l 

[-I r? transformed jt-coordinate in the 
I biggest mesh point index number in s- calculation plane [-] 

direction at the outflow [-] x wavelength [-] 
.i mesh point index number in Js-direction P dynamic viscosity [kg s m- ‘1 

1-l kinetic viscosity [m’s ‘1 
J biggest mesh point index number in J’- :: variable. stands for s, r~ [--] 

direction, beyond surface [--] P density of liquid [kg m ‘1 
J, index number of the surface point [-] 
k thermal conductivity of liquid F2 

surface tension Ir\r m ‘1 
vorticity [-1. 

[Wrn-‘K-l] 
L latent heat [J] Subscripts 
Nu Nusselt number, /Is/k [-I I liquid 
P pressure 0 standard value at the outflow location 
Pr Prandtl number [--] S surface 
Re film Reynolds number, 4G//[ [-] V vapor 
Re, film Reynolds number at the outflow W wall 

location, u,6,/v [-] x local value at the position s. 
t time 
T temperature Superscripts 
u velocity parallel to the condensation plate * parameter having its dimension 

1-l time averaged value. 

Hirshburg and Florschuetz [15, 161 established the 
linearized theory in a coordinate system moving with 
the wave by assuming periodicity and a parabolic 
profile. The sinusoidal and the intermediate wave state 
were got as asymptotic solutions, in which the inter- 
mediate wave named Kapitza [8] has long teardrop 
shapes with relatively steep wavefronts similar to 
single waves. They introduced a parameter/+, which 
is the ratio of the actual frequency to the most unstable 
frequency of the wave and indicates the distortion of 
the wave from the sinusoidal wave. f’ varies from 
the sinusoidal wave .f’ = I to the intermediate wave 
,f’ = 0.35. The calculated wave-frequencies, ampli- 
tudes, celerities and lengths agree well with the exper- 
imental values for Re < 400. The calculated space 
and time averaged Nusselt number predicts well the 
experimental results. Rao and Sarma [17] developed 
a laminar two film layer model for the momentum 
and energy equations, which are integrated over the 

film thickness. The influence of parameters, like the 
Prandtl number and the gravitational force, on the 
local film thickness and the Nusselt number are shown 
and compared with the Nusselt solution. Brauner [ 181 
establishes a four region and a periodic model for the 
roll wave on the thin substrate layer, and calculates 
the film thickness and wave-celerity and frequency for 
the laminar and turbulent case. The results agree well 
in the region 1000 < Re < 10000 with the exper- 
imental ones. 

Because the evolution of the film in time and space 
as well as the local heat transfer coefficient can be 
neither calculated by analytical theories nor accu- 
rately measured, attempts have been made recently 
to solve the unsteady basic equation by either finite 
element or finite difference methods. The two-dimen- 
sional computer calculations published up to now are 
focused mainly on one wave, which is in reality a 
highly three-dimensional phenomenon. Moreover the 
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equations were solved by using periodic boundary 
conditions. Bach and Villadsen [I91 solved the two- 
dimensional Navier-Stokes equation for a highly 
three-dimensional roll wave with finite elcmcnt 
method in a coordinate system which moves with the 
wave. The stationary solution is calculated for given 
physical parameters and wave shape factors by taking 
a wave with a form close to the stationary one as 
initial condition. When the shape does not change any 
more, the solution is assumed to be attained. The final 
wave structure, the stationary velocities and pressure 
are obtained and agree with the limited experimental 
data. Also Wasden and Dukler [20] investigated the 
roll wave two-dimensionally. They solved the basic 
equations with the available finite diffcrcncc codes 
TEACH-T and SIMPLER for a roll wave with differ- 
ent experimentally determined surface shapes. They 
got the streamline maps and wall shear-stress, but do 
not show the pressure distribution. Again, Moalem rt 
(11. [2l] calculated the roll wave by solving the thrce- 
dimensional basic equations with the available finite 
difference code FLOW3D and finite element code 
FIDAP in a coordinate system moving with the wave. 
They started from a prescribed wave form and cal- 
culated the evolution of one wave gliding on a sub- 
strate with a given thickness in front and in the back 
of the wave. The wave shape and the streamlines in 
the wave are obtained. 

The computer capacities at the moment do not 
allow to calculate the whole film flow and the local 
heat flux three-dimensionally from the beginning of 
the condensate film until the region of roll waves. as 
the results of Marschall and Lee [I] suggests. 

In these investigations, the condensate film flow 
without interfacial shear is calculated in the first part, 
the region from the leading edge of the film until the 
occurrence of distorted sinusoidal waves. The vapor 
is assumed to be saturated. The flow field and heat flux 
are calculated by two-dimensional direct computer 
simulation with non-periodic boundary conditions 
and without turbulence model. Since the flow in this 
region is still mainly two-dimensional, the two-dimen- 
sional calculation is not a major restriction. The 
calculations are overcoming the restrictions, like 
periodicity, fixed boundary conditions or pre- 
vious experimentally determined wave shapes. 

2. NUMERICAL SIMULATION METHOD 

The computer simulation was performed for an 
incompressible viscous liquid in the field of the con- 
densate film flow. Rl 1 was chosen as the medium for 
three reasons at the condition of the Prandtl number 
Pr = 4.3 and the ratio H = c&T,- T,)/L = 0.06. 
First, the properties of RI I are well known. Second. 
the dimensionless surface tension is with F = 2671 so 
big that the line of inception is at a reasonable small 
distance downward of the starting point of conden- 
sation, allowing a relatively small calculation area 
to be used. Third, due to the fluid properties, the 

condensate film is growing relatively fast with increas- 
ing distance from the beginning of the film. By this, 
more accurate measurements can be made, which are 
necdcd for the validation of the computer calculation. 
The two-dimensional time-dependent Navier-Stokes 
equations, the Poisson equation for the pressure and 
the linearized energy equation were solved with a finite 
difference scheme. The basic equations were non- 
dimensionalized with the surface velocity 11” and the 
Iilm thickness S,, at the outflow location of the cal- 
culation held obtained from the Nusselt theory. The 
coordinate and velocity parallel and perpendicular 
to the wall arc s = .u*/6,. J = r*/SO, u = u*/u~, and 
r = l’*/rO. respectively. The pressure is p = p*/(p& 
and the time t = I*/(S,,/U~). 

The equation of continuity and the Navier-Stokes 
equations are 

where Re,, is the film Reynolds number at the outflow 
position obtained from the Nusselt theory and Fr the 
Froude number. The Poisson equation is the diver- 
gence of the Navier-Stokes equations (2). (3) 

Although the theoretical value of (~u/Ss+dr/~r) is 
zero, the first terms of the left hand side were retained 
in order to prevent accumulation of numerical errors. 
The fifth and sixth terms of the left hand side were 
simplified with the help of the equation of continuity. 
The second term on the right hand side was retained 
because of the low Reynolds number. The Poisson 
equation became therefore : 

(6) 

Only the linearized energy equation without inter- 
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facial shear stress was used. Koh et al. [22] reported 
that the interfacial shear shows no influence on the 
local Nusselt number for conditions calculated in this 
paper. Ueda and Tanaka [23] showed by temperature 
measurements a thick conduction layer adjacent to 
the wall and a thin uniform temperature layer near 
the liquid-vapor interface, so that a nearly linear tem- 
perature profile was assumed. The dimensionless tem- 
perature is T = (T* - T,)/( T, - T,) 

d’T 
- - 0. 
aI)2 - (7) 

The increase of the film thickness by condensation 
of saturated vapor was calculated by using the linear- 
ized energy balance 

k L’pg6 * 
s(Ts-Tw)ds = ?d6 (8) 

where the effect of non-linearity suggested by 
Rohsenow [24] was taken into account by setting 

L’ = L+0.68c,(Ts- Tw). (9) 

The effect of the variation of the properties with 
temperature was approximated by the mean of Min- 
kowycz and Sparrow [25]. k, p, v and c,, were cal- 
culated at the temperature 

T= Tw+0.3(Ts-T,). (10) 

The calculations were done in a regular mesh (x, q). 
The transition function to the irregular mesh in the 
physical (x, y)-plane (Fig. 1) is of polynomial form 
for the y-coordinate 

y = 3.68 x lO*q- 1.33 x lOg*+4.05 x 10~~. (I 1) 

The basic equations were rewritten for the calculation 
in the (s, n)-plane with the derivatives 

aA aA alI - 1 -=- - 
ay 0 a~ all (12) 

-0 0.1 0.2 0.3 0.4 0.5 0.6 
X* Cm) 

FIG. I. Calculation region, boundaries and irregular stag- 
gered grid of the wall parallel velocity U; every fourth line 
in x-direction and every second one in y-direction of the 
(770 x 32) grid is drawn : velocity perpendicular to the wall 

u, pressure p and vorticity R. 

where A stands for u, ~1, p. 
The Poisson equation was solved with the Suc- 

cessive Over-Relaxation Method (SOR). Since the 
boundary conditions are complicated, an analytical 
calculation for the relaxation factor cannot be done. 
The relaxation factor was first calculated for Neu- 
mann boundary conditions and by varying the factor 
in the real field slightly, the one with the fastest con- 
vergence turned out to be 5 = I .66. The SOR iteration 
was stopped, when the pressure difference between 
two iteration steps was smaller than IO-*. 

The timestep advance was made with the Euler 
explicit scheme 

AA 
- = r.h.s.-terms of N-S equation. 
At (14) 

The third order upwind scheme, proposed by 
Kawamura and Kuwahara [26] was used for the con- 
vective term in the Navier-Stokes equations 

= A,.,[-B,+l., +8(B,+ I.j-Bi- 1.j) 

-4Bi- 1.1 +Bi-2.,)/(4h) (15) 

where A and B stands for the velocities u or v and 
for the coordinate x or ‘I. This scheme introduces a 
numerical viscosity, which is proportional to the 
fourth order derivative of the velocity and dissipates 
the high wave number motion. Employing the third 
order upwind scheme of equation (15), Miyauchi and 
Tani [27] showed with three dimensional simulations 
of homogeneous isotropic turbulence that the energy 
spectra and the kinetic energy are in good agreement 
with the experiment of Comte-Bellot and Corrsin [28]. 
The scheme was used by Kawamura and Kuwahara 
[26] not only for the simulation of large scale struc- 
tures, like the evolution of the wake behind a cylinder, 
but also for the transition from laminar to turbulent 
pipe flow. Stuhltrager et af. [29] used this scheme for 
the calculation of the coherent structures in the excited 
round jet and got good agreement with the exper- 
iment. Since no model is used for the turbulent 
viscosity, this scheme is well adapted to simulate the 
transition from laminar to turbulent flow. The central 
difference scheme was employed for all the other 
terms. 

The calculations were carried out in a rectangular 
region on the staggered grid points (Fig. 1). In order 
to see the influence of the outflow boundary con- 
ditions, the region had been varied. Since the mesh 
size is crucial for capturing the wavelength and ampli- 
tude of the unstable waves, the mesh and also the 
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mesh size had been varied. The different grids have 
I = 193, 385 and 770 points in the region 0 < 
x < 4500 as well as 0 < x < 2000 and J = 32 and 64 
in the region 0 < y < 1.5. The smallest mesh in the 
y-direction has been adapted to be on the surface at 
the line of inception and with v = 0.03 so small that 
it can resolve l/4 of the smallest measured amplitude 
[20] of the most unstable wave. The biggest mesh at 
the outermost position of a wave peak is y = 0.05. 
The size of the smallest mesh in axial direction has 
been chosen to cover well the most unstable wave- 
length by 8 points. Given the minimal mesh size 
in y-direction, the Courant-number at which stable 
calculations were obtained is 0.124. 

3. BOUNDARY AND INITIAL CONDITIONS 

Among the primitive variables, only velocities and 
the wave propagation values have been measured and 
can therefore be used for comparsion with the simu- 
lated results. From this consideration, only as few as 
necessary well defined velocity boundary conditions 
were used in this calculation. All other values for the 
boundary condition of the velocity and pressure were 
enabled to develop freely. This idea was supported by 
the results of testing of many combinations of velocity 
and pressure boundary conditions in the excited 
round jet [29]. In the case that the velocity and pres- 
sure are given at the same boundary by fixed values, 
distortion and oscillations occur, since they are 
depending on each other and cannot be given exactly 
at the same time by the finite difference scheme. 

In these calculations, the boundary conditions were 
chosen in the way that only the velocity and the film 
thickness of the Nusselt theory had to be set on bound- 
ary Bl (Fig. 1) for the first three rows, which are 
required by the third order upwind scheme. The grid 
for the velocity u was placed on the wall surface B3 
and the one of v was put before and behind the surface. 
A, and a*A,/at’ were set equal to zero, which gives 
the following nodal row values : 

u(i,O) = 0 (16) 

u(i, -1) = -u(i, 1) (17) 

u(i,O) = -v(i, 1). (18) 

Since the third order upwind scheme for the con- 
vective terms on the Navier-Stokes equations require 
in every direction two adjoining points to the center 
point, the donor cell method of Gentry ef al. [30], 
which needs only one adjoining point, was employed 
on the nodal points A(i, J- 1) on the surface bound- 
ary B2 and on the column points A(I- 1, j) on the 
outflow boundary B4. Here, the donor cell method is 
given only for the boundary B2 : 

A,+R., -AL.,BL./ 
Ax (19) 

A,,) = !(Ai+ i.j +A,.,) (20) 

A L., = i(A,, +A,- I.,) (21) 

BR., = Bi.1tAR.j > 0) 

B,., = 4, ,,,(AR., < 0) (22) 

BL,j = Bi- l.,(AL.j > 0) 

BL., = Bi.1 (A,*.j < 0). (23) 

The boundary condition at the outflow B4 deter- 
mines sensitively the distortion of the outflow region 
and its upstream influence so that it is not enough to 
have stable outflow boundary conditions. Simple and 
straight-forward boundary conditions, like constant 
vorticity, need only few calculation steps, but the 
influence on the upstream field is big, where as com- 
plicated conditions give a smooth outflow, but require 
many calculation steps. Among different tested 
boundary conditions [29], the method of Shapiro and 
O’Brien [3l] was chosen and also used for these cal- 
culations. Linear extrapolation is used in this method, 
in order to follow the Lagrange trajectory of a particle 
and to get outflow boundary value. The case of v > 0 
is shown in Fig. 2 

A’ = A,,, + g (A,- I., -A,,,) (24) 

A”= A,,,-,+%(A,-,.,-,-A& (25) 

A = A’+ g (A.‘-A’). 

The velocity u(i, J) nearest to the surface B2 was 
interpolated by a parabolic curve determined from 
the velocity on the surface velocity u,(i) and the two 
velocities u(i, J- I) and u(i, J-2). The surface vel- 
ocity u, was calculated from the Navier-Stokes equa- 
tion. The velocity u(i, J) was got from the equation 

Ul-l,j+l ; Ul,j+l y 

L “Lj --- ----- 

--_- --------- 

I 
VI-1 ,j-1 

W-lj-1 j Ul.j-1 

I 
FIG. 2. Outflow boundary condition of Shapiro and O’Brien 
[31] in the staggered grid, shown for the wall parallel vel- 

ocity a. with 



ofcontinuity and the one on the surface c.,(i) by setting 
the derivative ~V/c’rl = 0. 

Bccausc of the staggered grid. only the prcssurc of 
the outermost points cannot be calculated by SOR. 
Thcrcforc, the pressure at the outermost boundary 
points ~(i. 1) on 83 were got by calculating first the 
pressure dcrivativc ip/?rl bctwcen p(i.2) and p(i, I) 
with the Navicr-Stokes equation. Then. the prcssurc 
p(i, I) was linearly cxtrapolatcd from the prcssurc 
p(i.2) with the calculated pressure derivative. The 
pressure at the outflow boundary pointsp(l. ,j) cannot 
bc calculated in the same way as the points ~(i. J). 
since the velocity was already calculated by the 
Navier-Stokes equation by using the second order 
scheme. The outermost points were obtained with 
the backward dilTercncc formula by using the points 
/I(/--3.j), />(I-2. j) and p(/- I,,j) 

P/.,=/J/ I.,+(+, Ll--417/ z.,+p, x,)/2. (27) 

The surlacc is assumed to bc a free surface with no 
shear-stress. With the assumption that the wavelength 
is much bigger than the film thickness. the surface 
pressure f,(i) was calculated by 

The pressure ~(i. J) was linearly interpolated from 
the surface prcssurc a,(i) and ~(i, J- I). 

The displacement of the surface was calculated after 
cvcry time step from the surface velocity by using 
A.\-, = LI,AI. A!,, = r.,Al and from the increase of the 
film thickness due to the condensation by using the 
energy balance equation (8). 

As for the initial condition, the film thickness (r,, 
and the velocity II, of the Nussclt solution [4] including 
the parabolic profile inside the film was used. The vel- 
ocity c(i. ,j) was set to be zero. The pressure p(;, j) is 
the same as the surface pressure p,(i). calculated from 
equation (28). 

Starting from the initial conditions, the calculations 
wcrc first done until the steady state. Steady state is 
rcachcd. when on the one hand the time-averaged 

velocities and film thickness as well as the root mean 
square (r.m.s.) velocities are not changing any more. 
On the other hand, when the simulation time is bigger 
than the travelling time of a particle on the surface 
from the beginning to the outflow point. The results 
wcrc then taken from calculation sets of a real time of 
one second. 

4. RESULTS 

The analysis of the wave shapes and the film fluid 
dynamics are shown in part I of this paper. The con- 
nection of the fluid dynamic aspects to the increase of 
the heat transfer coefficient are presented in part II. 

The thickness of the film in the whole field, taken 
at every l/l6 s in real time, reveals the evolution of 
the surface instability at the line of inception into 
sinusoidal waves. which are merging downstream into 
harmonic waves (Fig. 3) and by this, doubling the 
experimental findings [2]. The line of inception is not 
at a fixed location, but fluctuates up and down stream. 
After the first strong growth downward of the line 01 
inception. the amplitude of the wave is increasing 
only slightly. This figure reveals also that the wave 
amplitude and length at the same s-location are not 
constant but are fluctuating. The progression of the 
wave can well bc seen by the rows they are forming in 
the multi-graph (Fig. 3). Gradual increasing of the 
inclination angle of these rows of waves from the 
lint of inception until the merging into long waves 
downstream indicates the increase of the wave celerity. 

Since the measurement and even the visual inspec- 
tion [3] of the laminar film with ripple waves as surFace 
instability is very difficult. the unsteady computer 
simulation gives new insights. Because the fluctuations 
are very small, the time averaged film thickness is 
subtracted from the instantaneous ones and the 
change of the film thickness at successive time inter- 
vals shown again after magnification (Fig. 4). The 
surface in the laminar region is slightly moving 
upward and downward in a low frequency fluctuation. 
This fluctuation goes together with the fluctuation of 

226 

0 1000 2000 3000 4000 

X 

F~ti. 3. Instantaneous surface location of the film in the whole calculation region at every l/l6 s after the 
steady state. 
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FIG. 4. Instantaneous surface location of the film in the 
region from the leadin_r edge until the strong growth of the 
waves at the line of inception at every I ‘I6 s after the steady 

state. 

the location or the lint of inception and with the 

upstream feedback of the rapid growth of the sinu- 
soidal waves. Supporting the stability analysis or 
Marschall and Let [I], surface instability occurs at 
early stage and moves on the surface downward and 
may induce the early and rapid growth of the sinu- 
soidal waves at the lint or inception. The time-step 
advance of the simulation allows to obscrvc the 
motion and the evolution of the ripple waves. Its 
celerity and wave length can well be determined (Figs. 
6, 7). The wave cclcrity of the ripple waves is smallct 
than the mcasurcd one or the falling film without 
condensation [7-IO]. showing the influence ofthccon- 
dcnsation by which the waves arc slowed down. 

The time averaged film thicknesses of the computer 
simulation, the cxpcrimcnts [9.32-351 and the Nusselt 
theory increase in the laminar region until the lint of 
inception (Fig. 5). The fihn thickness of the Nusselt 
theory is slightly bigger than the experimental and 
computer simulated one. Considering the bigger 
difference of the average fihn thickness bctwccn the 
Nusselt theory and the cxperimcnt as well as the com- 
putcr simulation when big surFace waves arc prcscnt. 
the small diffcrencc in the laminar region can bc 
explained by the influcncc of the ripple waves and the 
low frequency surpacc fluctuation. The film thickness 
is decreasing during the rapid growth of the sinusoidal 

waves at 70 < RCJ, < 140, which goes together with 

Rex 
FIG. 5. Time-averaged film thickness of the present simu- 

lation, the Nusselt theory and the experiments [9. 32-351. 

Re, 

FK;. 6. Wavelength of the prcscnt simulation of tllc con- 
dcnsation lilm. the throry 01‘ Hirshhurg and Florsclrucr;l [I’] 
and esperimcnts [7. 8. IO. 361 for the litlling lilm without 

condensation. 

the strong increase of the wave celerity. Further 
downstream at Rc, > 120. when the wave amplitude 
is increasing only slightly. the film thickness incrcascs 
again. In this region, the computer simulated tilm 
thickness is much smaller than the one of the Nussclt 
theory. which dots not take the surface waves into 
account. 

The computer simulated wave-lengths arc taken 
l’rom a big number of waves at every location (Fig. 
6). The fluctuations, therefore. arc shown with bars. 
Although the simulated results arc in good agrccmcnt 
with the expcrimcnts of the falling film 01‘ water at 
II0 < Rc, < 220. the) increase quickly from 
Re, = 220 whcrc the waves begin to merge. Hirshburg 
and Florschuetz [I51 calculated the wavclcngth of 
different wave forms (sinusoidal to intcrmcdiatc wave 
state) for the cast of the falling film without con- 
densation. By comparing these wave shapes and wave 
lengths with the ones oT the computer simulation. 
the same order of wavelength can be obscrvcd for 
Rc > I IO. Hirshburg and Florschuetz [ 151 considered 
a falling film without condensation and used as 
upstream boundary condition at Re < 100 a film of a 
given thickness, which allows the long wave instability 
to grow into short sinusoidal waves. The condensate 
fihn, however, whose thickness incrcascs from a very 
thin fihn in the laminar region, has short wave insta- 
bility. This short-wave instability is growing at 

100 

FIG. 7. Wave-celerity of the simulation of the condensation 
film and comparison with the experiments [7 IO. 361 for the 

Tailing flm without condensation. 
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FIG. 8. Wave-frequency of the present simulation, the exper- 
iments [7-IO] and also the theory [37] for the falling film 

without condensation. 

110 < Re < 220 into sinusoidal waves with about the 
same wave-length as the one of the falling film. 

The celerity of the ripple waves on the condensate 
film is increasing with the same rate but it is smaller 
than the celerity of the waves of the falling film with- 
out condensation due to the effect of the condensation 
(Fig. 7). The sinusoidal waves, however, which are 
growing into big waves, have a smaller celerity than 

‘.“L 

x 

0 .5 

0 
0 1000 2000 3000 4000 

(a) X 

(c) X (4 X 

the ripple waves at the beginning of their detection. It 
could not be sorted out during’ the detection of the 
sinusoidal waves, whether they are growing from low 
frequency fluctuations or from ripple waves, which 
are slowed down during the strong increase of their 
amplitude. During the strong growing at 70 < 
Re,v < 140, the celerity is increasing quickly and is 
reaching about the same celerity level and increase as 
the ripple waves. 

The frequency of the surface wave was obtained 
from the Fast Fourier Transformation of the film 
thickness, which was stored at every time step and at 
every eighth mesh point during the calculation (Fig. 
8). The frequency of the ripple and sinusoidal wave 
at low Reynolds number increases slightly in the 
region of about 19 Hz and continues to decrease 
strongly after the big growth at the beginning of the 
merging of the waves at Re, > 200. For a falling film 
without condensation, however, the theory of Pierson 
and Whitaker [37] predicts the most unstable fre- 
quency to increase with the Reynolds number. The 
reason for the different behavior due to condensation 
is again that the falling film has a given thickness 

1.0 I I 0 I I 

01 ' ( I I I I 
0 1000 2000 3000 4000 

(b) X 

1.0 I 1 I I I 

FIG. 9. Contours of the time-averaged and r.m.s. velocities; (a) ~7, (b) fi, (c) u’, (d) u’. Contour levels of u : 
0.001,0.005,0.01,0.05,0.1,0.15,0.2,0.3,0.35; ofu: -6.0x 1O-5, -4.0x IO-‘, -2.0x IO-‘, 2.0x IO-‘; 

of u’: 0.001, 0.005,0.01,0.05 and of u’: 2.0 x 10e4, 4.0 x 10e4, 6.0 x 10e4, 8.0 x 10m4, 1.0 x IO-‘. 
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at the beginning and the instability start with low 
frequency and long wave length. The theory [37] did 
not include a merging of waves at higher Reynolds 
number and could therefore not predict a decrease of 
the frequency. The most unstable wavelength at the 
line of inception does not differ much from the exper- 
imental results. Stainthorp and Batt [38], however, 
reported a decrease of the wave frequency of 50% 
from Re,v > 100 over a flow length of 0.6 m. The 
computer calculation predicts about the same 
decrease of the frequency on the same flow length. 
The experiments [9, IO] and the theory [37] show the 
most unstable frequency at I= 25 Hz at about Re,, = 
80, the computer simulation gives the one at f= 19 Hz 
at Re, = 7G140. 

The time-averaged and r.m.s.-velocities can only be 
taken in the region which is always on the liquid side 
of the surface (Fig. 9). This region is bounded by the 
surface until the line of inception and by the deep- 
est wave troughs farther downstream. Because of this, 
the maximum time-averaged velocity U is on the sur- 
face at the line of inception (Fig. 9(a)). The &velocity 
in the trough region is slightly smaller. The G-velocity 
is negative in the region of the ripple waves near the 
surface due to condensation and increases to zero near 
the wall (Fig. 9(b)). In the trough region, which is 
mostly just beyond the surface, the G-velocity is 
slightly negative and positive. The r.m.s.-velocity 
fluctuation u’ and ZJ’ are very small in the region of the 
ripple waves and have their peaks in the region of the 
strong waves (Fig. 9(c), (d)). The fluctuations in the 
trough region are slightly smaller than the peak values 
and they decrease gradually in direction of the wall. 
This result is confirmed by the velocity and tem- 
perature measurements of Ueda and Tanaka [23] and 
supports the assumption that the heat flux per- 
pendicular to the wall occurs mainly by conduction. 
The big fluctuation near the surface, however, indicate 
a mixing and would suggest a flattening of the tem- 
perature profile. 

The influence of the outflow boundary condition 
[30] on the upstream field can well be seen from the 
time averaged and r.m.s.-values. Also in the fields of 
other size, the distortion of the time-averaged values 
is in the region of about x = 380&4500 at the outflow. 
The r.m.s.-values do not show a remarkable dis- 
tortion. 

The instantaneous values of the velocity is shown 
by the velocity vector field (Fig. 10). In order to show 
the movement of the particles in the wave, the u- 
velocity is shifted by the wave celerity. The influence 
of the wavy flow on the particle movement in the 
substrate can be seen as deep down as y = 0.1 (Fig. 
IO(a)). The particles in the waves are accelerated and 
heaved in the front and let down in their back. It 
shows that although the wave amplitude is already 
big compared to the substrate thickness, the waves 
are still not roll waves. The big influence of the wave 
on the film up to the wall is also shown by the 
vorticity, whose vorticity peak at the wall beyond the 
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FIG. IO. (a) Velocity vectors, (b) vorticity R and (c) pressure 
(p-p,) of the instantaneous wave. Contour levels of R: 
-0.2. -0.4, -0.6, -0.8. -1.0. -1.2, -1.4, -1.6 and of 

(p-p"): 0.202. 0.204, 0.206. 0.208, 0.210. 

wave crest is absolutely about 60% bigger than the 
wall vorticity beyond the ripple wave surface (Fig. 
IO(b)). The vorticity at the wall in the trough region 
is about the same as in the ripple wave region. The 
instantaneous pressure is biggest in the region beyond 
the wave crest and decreases to a minimum in the 
region beyond the trough (Fig. IO(c)). The pressure 
due to the surface tension dominates the pressure 
within the film so that there is little variation in X- 
direction, where one has to notice the scale of the 
figure with a ratio of wave length to wave peak thick- 
ness of x/v rr 50. 
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5. CONCLUSIONS 

The direct computer simulation of the vertically 
falling, condensate film in the region from the begin- 
ning of condensation until the occurring of merging 
waves shows instantaneous events, which cannot be 
captured by the experiments. like the low-frequency 
fluctuation of the laminar region with ripple waves 
and the evolution of surface instability into big surfaze 
waves. It allows to see further the details of the influ- 
ence of the wave on the substrate up to the wall. where 
the pressure and the absolute wall vorticity are rela- 
tivcly strongly increased beyond the wave crest. By 
comparing to the theoretical and experimental results 
of the falling film without condensation, the simi- 
larities and the difference in film thickness as well as 
wavelength. celerity and frequency is pointed out. 
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